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Abstract— This work develops an algorithm to initialize an
Unscented Kalman Filter using a Particle Filter for applications
with initial non-Gaussian probability density functions. The
method is applied to estimating the position of a road vehicle
along a one-mile test track and 7 kilometer span of a highway
using terrain-based localization where the pitch response of
the vehicle is compared to a pre-measured pitch map of each
roadway. The results indicate that the method can be used
to decrease the computational load of the algorithm while
maintaining the accuracy of the Particle Filter, but that the
challenge is to determine the appropriate moment to perform
the switch between algorithms. A modified Chi-Squared test
is used to determine a switchover point when the probability
density function of the particle population can be approximated
by a Gaussian for initializing the Unscented Kalman Filter. A
normalized innovation squared test is also demonstrated to be
useful for monitoring the health of the Unscented Kalman Filter.

I. INTRODUCTION

With the goal of increasing the safety and efficiency of
road vehicles, there is a great deal of interest in determining
vehicle position. The primary means of localization is the
Global Positioning System (GPS); however, multi-path er-
rors, satellite obstruction, the ease of jamming, slow update
rates, and other problems have increased the interest of
developing an algorithm to localize a vehicle independently
of GPS.

Previous work has shown that matching in-vehicle pitch
measurements with a terrain map can be used to estimate
a vehicle’s longitudinal position with sub-meter accuracy
and independently of GPS [1]. Experiments using a Particle
Filter (PF) algorithm was used to localize a vehicle along the
one-mile test track at the Thomas D. Larson Transportation
Institute (LTI). Further experiments in [2] applied the PF
algorithm to localize a vehicle along a 60 km highway with
an accuracy of 5 meters.

The previous work in [1] and [2] used a PF algorithm
to localize a vehicle because PFs are easily initialized,
requiring no a priori position estimate; however, after the
estimates are initialized, there is a severe computational
cost of maintaining the vehicle position using a PF with
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thousands of position particles. The objective of this work
is to reduce the computational cost of the previous terrain-
based localization algorithm.

In order to localize a vehicle along a terrain map an estima-
tor can be used that compares a map-predicted vehicle pitch
measurement to the actual pitch measurement. The vehicle
position is thereafter determined by propagating regions of
highest map-sensor correlation using a motion model and
wheel odometry. The motion model is one-dimensional and
linear; however, the initial position probability is uniform
along the map; hence a Kalman Filter (KF) cannot be used
as it requires a Gaussian probability. Instead, a PF was
used in previous work because the initial population of
position estimates is scattered randomly across the terrain
map. In application, and upon initialization, the algorithm
will likely have a position estimate which will only accelerate
convergence; however, this work assumes a uniform position
probability in order to limit the number of assumptions.

The Extended Kalman Filter (EKF) could also be used
instead of a KF, except it requires a model that is a contin-
uously differentiable function of the states; thus, an EFK is
not suitable because this work uses a map of discrete points
and not a continuous function. To develop several continuous
functions to represent a roadway network could be just as
complex as using the PF alone.

An alternative approach is to use an Unscented Kalman
Filter (UKF) [3]. The UKF is used in many estimation
problems when a KF is unfit due to non-linear discrete-
time dynamic equations, and has been shown to be more
accurate than the EKF in vehicle positioning with non-
linear models [4]. The UKF, which can be considered a
special case of a PF, requires relatively little computational
effort because it uses only a few particles called sigma
points that are placed at pre-determined distances from the
current position estimate, instead of thousands of particles
required to use a PF. Pitch measurements at the sigma
points are calculated corresponding to their position along
the terrain map, thus linearization or continuous functions
are not required. However, the UKF must be initialized using
a Gaussian position estimate which in this work is assumed
to be unavailable at algorithm start. The tradeoffs between
computational and initialization complexity of the PF and
UKF algorithms are summarized in Fig. 1.

The ideal case would be to somehow switch between
each algorithm to use each when most appropriate. The
intent of this study is to examine the implementation of
such an algorithm; the terrain-based localization application



Fig. 1: Tradeoffs of the PF and UKF algorithms and criteria
for switching between them.

will be used to demonstrate the algorithm and compare
results. The goal is to use the PF when the estimate is
being initialized or is highly uncertain, and use the UKF
only after the PF algorithm has converged to essentially
a Guassian distribution. A modified Chi-Squared (χ2) test,
which the authors call an Upsilon-Squared (Υ2) test, is used
to determine the “Gaussian-ness” of the PFs vehicle position
estimate and use it to initialize the UKF. An innovation test is
also used to monitor the UKF estimate and, when the position
estimate is considered inaccurate, the algorithm reverts back
to the PF by re-initializing the particle population across the
terrain map.

This paper is outlined as follows: Section II presents the
experimental data used for this study. Section III discusses
the UKF algorithm. Section IV demonstrates the challenges
with using the χ2 test for switching from the PF to the
UKF and develops an alternative method used for switching
from the PF to the UKF. Section V optimizes the switchover
criterion in terms of accuracy and computational effort. Sec-
tion VI applies and discusses the results of the localization
algorithm. Section VII implements a method of monitoring
the health of the UKF estimate and Conclusions summarize
the main results of this study.

II. DATA ACQUISITION

The algorithms used in this and prior work were im-
plemented off-line using data previously recorded using an
instrumented vehicle equipped with a NovAtel “SPAN” Dif-
ferential Global Positioning System (DGPS) that is factory-
integrated with a Honeywell HG1700 ring-laser gyro Inertial
Measurement Unit (IMU) with positioning accuracy of 2 cm
(one sigma) and attitude accuracies of 0.013 for pitch and
roll and 0.04 degrees for yaw.

A terrain map was generated by recording position and
attitude data over the entire Thomas D. Larson Transporta-
tion Institute (LTI) test track with the vehicle driving at 5
m/s. This resulted in a map resolution of 5 cm. A second
set of data was recorded at about 10 m/s to be used as
the in-vehicle pitch measurements in the off-line localization
algorithm. Fig. 2 shows the overhead view of the mapped
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Fig. 2: Overhead view and in-vehicle pitch data collected
around the LTI test track.

area with the vehicle’s starting position, and the pitch map
and measured pitch data sets. Variations in pitch between the
data sets are visible and are likely due to differences in speed
and inexact path tracking. The pitch data were filtered using
a low-pass filter at a cutoff frequency of 0.1 cycles/meter as
discussed in [1].

Highway data was also collected while traveling an av-
erage 27 m/s along highway 322 in State College, PA. The
overhead map and corresponding pitch map are shown in
Fig. 3.

III. INITIALIZING THE UNSCENTED KALMAN FILTER

In order to decrease the computational load of the estima-
tor, a UKF will be initialized from the PF estimate. Similar to
the work done in [5] and [6] where PFs are used to initialize
landmark position estimates, this work will initialize the
vehicle position estimate using a PF until the probability
distribution is “Gaussian enough” for use with an UKF. Once
the pdf is considered to be Gaussian, the UKF is initialized
using the PF results where the estimated vehicle position (x̂)
and variance (P ) are calculated from the average position
and variance of the PF particle population. The details of
the PF algorithm are described in [1] but omitted here for
brevity.
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Fig. 3: Overhead view of the terrain map and in-vehicle pitch
data collected along highway 322 in Pennsylvania.

Once initialized, the UKF algorithm is implemented fol-
lowing Algorithm 3.1 in [3] with α = 1, β = 2, κ = 0, and
Ns = 3 sigma points by repeating the following:

First, the location of the sigma points, X , are calculated
about the estimated vehicle position x̂:

Xk−1 = [x̂k−1, x̂k−1 + C, x̂k−1 − C] (1)

C = α
√
Ns · Pk−1 (2)

Second, the time update uses the motion model to advance
the sigma points, measure their corresponding pitch, Y , ac-
cording to their position along the terrain map, and estimate
the expected pitch measurement, ŷ, using:

X−
k = Xk−1 + dxk−1 (3)
x̂−k = X−

k−1 ·Wm (4)

P−
k =

(
X−
k−1 −

[
x̂−k−1, x̂

−
k−1, x̂

−
k−1

])
·Wc

·
(
X−
k−1 −

[
x̂−k−1, x̂

−
k−1, x̂

−
k−1

])T
+Q (5)

Y −
k = fNL

(
X−
k−1

)
(6)

ŷ−k = Y −
k−1 ·Wm (7)

where the superscript “-” (e.g. X−) denotes an a priori value
or value calculated prior to the measurement update, k is the
sample time, dx is the distance the vehicle travels between
time steps as inferred from odometry, Q is the variance in
the odometry measurement, fNL is the look-up table used

to determine the pitch of each sigma point corresponding to
their position along the terrain map, and

Wm =

[
α2 − 1

α
,

1

2αNs
,

1

2αNs

]
(8)

Wc =

 α2−1
α + 1− α2 + β 0 0

0 1
2αNs

0

0 0 1
2αNs

 (9)

Third, the measurement model is implemented in the
measurement update:

Pyy,k =
(
Y −
k−1 −

[
ŷ−k−1, ŷ

−
k−1, ŷ

−
k−1

])
·Wc

·
(
Y −
k−1 −

[
ŷ−k−1, ŷ

−
k−1, ŷ

−
k−1

])T
+R (10)

Pxy,k =
(
X−
k−1 −

[
x̂−k−1, x̂

−
k−1, x̂

−
k−1

])
·Wc

·
(
Y −
k−1 −

[
ŷ−k−1, ŷ

−
k−1, ŷ

−
k−1

])T
(11)

K = Pxy,k · P−1
yy,k (12)

x̂k = x̂−k +K ·
(
θa,k − ŷ−k

)
(13)

Pk = P−
k −K · Pyy,k ·K

T (14)

where θa,k is the measured in-vehicle pitch and R is the
measurement noise variance on pitch.

Before implementing the UKF, a method is needed to
determine when the PF estimate is “Gaussian enough” to
be used to initialize the UKF.

IV. MODIFIED CHI-SQUARED TEST

In order to determine the “Gaussian-ness” of the distribu-
tion, this study will first follow the work presented in [5]
which used a χ2 test to determine how well the distribution
of particles fit a Gaussian distribution of the same mean and
variance. Once the χ2 value was reduced below a threshold,
then the distribution was assumed to be Gaussian. An alter-
nate approach is to calculate the Kullback-Leibler distance,
or relative entropy, but the method is fairly expensive [7]
with similar results to using the χ2 test. Modifications to the
χ2 test will be needed for implementation, as shown below.

The Chi-Squared (χ2) test is a goodness-of-fit test that is
executed every time step and is used to determine how well
the distribution of particles follows an assumed distribution;
in this work the desired distribution is a Gaussian.

In order to calculate the value of χ2, a histogram is made
of the position estimates with nb = 13 evenly distributed
bins located between ±3 standard deviations of the mean
such that the bin width is dxbin = σx/2 and the bin centers
are located at

b = [µx − 3σx, µx − 2.5σx, . . . , µx + 3σx] (15)

where µx is the mean of the position particles and σx is the
standard deviation of the position particles from the mean.
The bin locations are chosen to fully capture the shape of
the desired Gaussian distribution for comparison with the
particle population. It should be noted that the time index
“k” was removed from the above and following equations in
order to simplify the notation; however, all parameters in the
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Fig. 4: Position estimate error as a function of the distance
traveled.

χ2 test and those discussed hereafter are updated every time
step.

The value of the histogram at each bin (hi) is the number
of particles in each bin (ni), normalized by the total number
of particles (N) and the bin width (dxbin)

hi =
ni

N · dxbin
(16)

such that hi represents the probability density of the particles.
The desired value at each bin location is calculated from

a Gaussian pdf

Gi =
1

σx ·
√

2π
· exp

(
− z2i

2 · σ2
x

)
(17)

where zi = bi − µx. Then χ2 is calculated as

χ2 =

nb∑
i=1

(hi −Gi)2

Gi
(18)

The χ2 value can then used to determine when the particle
population is Gaussian enough to initialize an UKF algorithm
by selecting a threshold value (χ2

min) such that when χ2 <
χ2
min the algorithm switches from using the PF to using the

UKF. The UKF is initialized using µx and σx of the particle
estimates at the switchover point.

To demonstrate the use of the χ2 parameter, the PF was
implemented using map and in-vehicle measurement data
collected at the LTI test track with N = 1, 000 particles,
dx = 10 meters, R = 0.1 deg2, and Q = (0.01 · dx)2 m2.

The results of the PF are shown in Fig. 4 where the
position estimate error and two times the standard deviation
of the particle population (2σx) are plotted as a function of
the distance of vehicle travel.

It can be seen that the position estimate converges to sub-
meter accuracy, or when the error in the position estimate
is less than one meter, after about 300 meters of travel. The
standard deviation (2σx) is also shown to converge to about
5 meters at that location. With this level of accuracy and
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Fig. 5: χ2 test values as a function of the distance traveled.

precision, we can justly conclude that the PF has converged
to correctly estimate the position of the vehicle. It should
also be noted that the PF maintains the accurate estimate of
the vehicle’s position as it completes the loop around the
track.

The value of χ2 was also calculated throughout the sim-
ulation and is shown in Fig. 5 as a function of the distance
travelled.

It can be seen in Fig. 5 that the initial χ2 value (about
0.005) is lower than when the PF has converged to the correct
vehicle position (about 0.3 at D=300 meters). This is because
the Gaussian approximation to the particle population is
calculated from σx, which is initially very large to represent
the initial uniform pdf of the particle population. Thus, the
initial χ2 value is low because the Gaussian approximation
with the large initial σx is a good fit to the initial, uniform
particle pdf, despite the fact that the PF has not converged to
the correct estimate. This continues to be the case until the
particle population becomes multi-modal and the assumed
Gaussian pdf is no longer a good fit.

One can observe from these results that use of the χ2 test
as a switchover metric yields poor results. Due to the initial
values of χ2 being lower than when the PF is converged,
choosing a PF to UKF switchover value of χ2

min lower than
the initial value is not possible. Thus, the UKF will never
be activated. It is therefore necessary to modify the χ2 test
to develop a metric that decreases as the particle distribution
becomes more Gaussian and more converged.

One possible modification to the χ2 test becomes evident
when examining the standard deviation σx along with the
χ2 value. Although the initial χ2 values are very low, the
initial σx is very high, while at the end of the algorithm σx
is low, as shown in Fig. 4, and χ2 is also low. Thus, the test
can be modified by scaling χ2 with σx such that Eq. (18) is
modified to

Υ2 = χ2 · σ2
x =

nb∑
i=1

σ2
x ·

(hi −Gi)2

Gi
(19)

This new “Upsilon-squared” test (named because Upsilon
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preceeds Chi in the greek alphabet) is used on the data from
the previous results and is shown in Fig. 6.

In comparison to Fig. 5, the values of Υ2 in Fig. 6 are
clearly reduced when the PF algorithm converges to the
correct vehicle position and the pdf is uni-modal. Thus, a
threshold value (Υ2

min) can be chosen such that when Υ2 <
Υ2
min the particle population can be considered “Gaussian

enough” and the algorithm switches from the PF to the UKF.

V. OPTIMAL THRESHOLD

In order to minimize computational effort and maximize
estimate accuracy, this section presents a methodology to
determine the optimal threshold value of Υ2

min for switching
from the PF to the UKF estimation method. A Monte Carlo
simulation is used to repeat the initialization algorithm 25
times for each of the varying values of Υ2

min. Each simula-
tion is initialized with a different random initial population
for the PF and iterated until Υ2 < Υ2

min, when the UKF is
initialized, and iterated until the vehicle completes one loop
around the test track.

The final estimate error (Ex) calculated using the true
vehicle position measured using DGPS, and standard devia-
tion (σx) for each simulation around the track are averaged
over the final 300 meters of travel. Additionally, the number
of floating point operations (FLOPS) is also calculated and
normalized by the number of FLOPS that would have been
required for a pure PF implementation (5.63x106). This
process is repeated over 25 runs, and the average values are
recorded. The resulting average estimate error and normal-
ized FLOPS are shown in Fig. 7.

The process is also repeated using data collected along
highway 322 in State College, PA with a map decimation
of 0.5 m, and with N = 7, 115 particles, dx = 25 meters,
R = 0.1 deg2, and Q = (0.01 ·dx)2 m2. The results are also
shown in Fig. 7.

From Fig. 7, it can be seen that the average estimate error
is relatively constant for low values of Υ2

min; hence, a low
value of Υ2

min is desirable. It can also be seen that the LTI
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Fig. 7: Tradeoff in the average estimate error and normalized
floating point operations as a function of Υ2

min.

estimate error for Υ2
min > 100 is larger than 2σx, indicating

that either the PF converged to an erroneous position or the
PF converged correctly but the UKF failed to maintain the
true vehicle position within the expected range of its pdf,
hence the algorithm “lost” the vehicle. This also occurred
with the highway 322 data for Υ2

min > 3, 000.
Fig. 7 also demonstrates the decrease in computational

effort as Υ2
min increases, as evidenced by the decrease in the

number of FLOPS; hence, it is desirable to have a large Υ2
min

such that the UKF is initialized quickly. Thus, a tradeoff in
choosing Υ2

min exists between reducing the estimate error
and the computational cost.

After comparing the results in Fig. 7, it is evident that suit-
able threshold values are Υ2

min ∈ [0.01, 100] for estimation
accuracy and Υ2

min ∈ [10, 10, 000] for computational effort.
However, because the Gaussian approximation is better for
smaller values of Υ2

min, a threshold of Υ2
min = 10 is

chosen as a good tradeoff between the algorithm accuracy
and computational load.

VI. UKF INITIALIZATION RESULTS

A. LTI Test Track

With the threshold value of Υ2
min = 10, the combined

PF and UKF algorithm is used used to estimate the vehicle
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Fig. 8: The particle position estimate error and standard
deviation as a function of the distance traveled. The solid
vertical line indicates the point of transition from the PF to
the UKF.

position along the LTI test track. The resulting position
estimate error is demonstrated in Fig. 8 where it can be seen
that once the PF converged and the UKF was initialized, the
UKF continued to estimate the vehicle position with sub-
meter accuracy. The distance at which the algorithm switched
from a PF to UKF is indicated by the solid vertical line.

The pdf of the particle population and the Gaussian
distribution at several intervals up to the time of transition
is shown in Fig. 9. The advantage of the PF is seen in the
first frame at D = 10 meters when the pdf is bimodal as a
result of maintaining two possible vehicle locations; the true
vehicle position relative to the estimated vehicle position is
indicated by the solid vertical line. After 320 meters of travel
the bimodal pdf has converged to a Gaussian distribution that
has satisfied the Υ2

min criterion.
From these results, it is evident that the Υ2 test is an

accurate means of determining when the particle population
is “Gaussian enough” for initializing a PF. Also, it is evident
that the UKF was capable of maintaining a sub-meter vehicle
position estimate while reducing the computational cost. In
fact, the PF required 37 · N + 9 FLOPS per iteration, or
37,009 FLOPS per iteration using N = 1, 000 particles; the
UKF, however, required 38 ·Ns + 6 FLOPS per iteration, or
120 FLOPS per iteration using Ns = 3 sigma points. Thus,
using the UKF resulted in a substantial 99.7% reduction in
computations per iteration.

B. Highway Implementation

Now that the UKF algorithm has been shown to localize a
vehicle accurately along the LTI test track, the algorithm is
further tested using the data collected along highway 322 in
State College, PA. The advantages of using a UKF is even
more evident when in use over a long period of time, or
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Fig. 10: The particle position estimate error and standard
deviation as a function of the distance traveled along the
highway. The solid vertical line indicates the point of tran-
sition from the PF to the UKF.

a longer travel distance. The resulting estimate error as a
function of the distance traveled is shown in Fig. 10.

It can be seen in Fig. 10 that the algorithm transitioned
from the PF to the UKF with only 10 meters of position
accuracy; however, once converged, the UKF algorithm was
able to improve to and maintain sub-meter accuracy through
the remainder of the simulation. The particle population is
shown to converge to a Gaussian distribution in Fig. 11
where it is evident that the PF particle population satisfied
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the convergence criterion after only 500 meters of travel.
The computational savings of using the UKF can be seen

in comparing the number of FLOPS per iteration. With
37 · N + 9 FLOPS per iteration and using N = 7, 115
particles, the PF required 263,264 FLOPS per iteration.
This a substantial increase in computational effort from the
LTI simulation due to the large number of particles. The
UKF, however, required only 120 FLOPS per iteration, as
calculated above. Thus, initializing and switching from a PF
to an UKF resulted in a 99.95% reduction in computational
effort per iteration.

VII. SWITCHOVER CONTROL WITH INNOVATION
MONOTORING

The Υ2 test has shown the capability of determining when
the pdf of a particle population is Gaussian enough for
initializing a UKF, and the algorithm has demonstrated the
ability to maintain an accurate vehicle position estimate.
It is a concern, however, that the algorithm be capable of
maintaining an accurate position estimate in the presence of
unexpected vehicle behavior, accelerations, lane deviations,
or changes in the terrain. For example, if a vehicle diverts
from the mapped roadway, the vehicle position will be lost;
a successful algorithm needs to be capable of re-initializing
the vehicle position estimate when an inaccurate estimate is
suspected.

If the UKF algorithm loses the vehicle position, the
UKF needs to be aware that the position estimate is no
longer accurate. This can be accomplished by means of a
Normalized Innovation Squared (NIS) test [8] which can be
used to monitor the health of the UKF estimate. The NIS
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Fig. 12: In order to simulate a departure and re-entry from
the highway, false terrain data is inserted into the pitch map
collected along highway 322 in State College, PA.

error (ε) is calculated as

εk = νk · P−1
yy,k · νk (20)

where ν is the innovations of the UKF, calculated as:

νk = θa − ŷ−k (21)

Once the NIS error reaches a specified maximum limit (ε >
εmax) then the UKF is stopped and a PF is re-initialized with
N particles scattered randomly across the entire map.

In order to demonstrate this method, vehicle data is
collected again along small portion of highway 322, as
shown in Fig. 12, where the vehicle exits the highway at
an off-ramp, then quickly re-enters the highway, simulating
a path deviation. Thus, the measured in-vehicle pitch is offset
slightly from the pitch map and large deviations in the pitch
measurements are introduced.

Using this data, it is assumed that the algorithm has al-
ready converged, thus the UKF algorithm is initialized to the
correct vehicle position; the algorithm is then implemented
without using the NIS test to monitor the innovations. The
resulting estimate error is shown in Fig. 13 where it can be
seen that the UKF, without using the NIS test, was unable



0 500 1000 1500 2000 2500 3000 3500
10−2

10−1

100

101

102
Lo

ng
. P

os
iti

on
 E

st
im

at
e 

Er
ro

r (
m

)

Distance Traveled (m)

Error in Population Mean
2!" of Population
Map Decimation

Fig. 13: Vehicle position estimate error without using the
NIS test.
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Fig. 14: Vehicle position estimate error with the NIS test and
multiple switchover points; the solid vertical line represents
the point of transition from the PF to the UKF algorithm and
the dashed vertical line represents the transition back from
the UKF to the PF algorithm.

to maintain an accurate position estimate during highway
departure or recover to an accurate estimate once the vehicle
returned to the highway, as evidenced by the fact that the
estimate error is greater than 2σx.

To demonstrate the switchover control using the NIS test, a
value of εmax = 1 is chosen (by trial and error) and the UKF
algorithm is implemented again with the position estimate
initialized to the correct vehicle position. The resulting
estimate error is shown in Fig. 14.

It can be seen in Fig. 14 that when the vehicle departed
from the mapped lane around 1.1 km of travel, the NIS
test indicated an increase in estimate error and stopped the
UKF to initialize the PF, as indicated by the dashed vertical

line. Then, for nearly a kilometer, while the vehicle was
traveling off the mapped lane, the algorithm converged twice
to an erroneous position estimate and continued to switch
between the PF and UKF. Around 2.1 km of travel, once the
vehicle was again traveling along the mapped lane, the PF
converged to an accurate position estimate until the algorithm
transitioned to the UKF at 2.5 km. The UKF was then able to
converge and maintain sub-meter accuracy for the remainder
of the experiment.

Thus, it can be seen that the NIS test is capable of
monitoring the health of the UKF. Also, the combination
of using the Υ2 test for determining when to initialize the
UKF and the NIS test for monitoring the health of the UKF
has demonstrated an increase in the robustness of the terrain-
based localization algorithm. Similar innovation monitoring
can also be implemented on the PF algorithm to increase
the robustness even further, although that was not performed
here in order to demonstrate the accuracy of using the Υ2

and NIS tests.

VIII. CONCLUSIONS

A UKF vehicle positioning algorithm was shown to be
capable of localizing a vehicle’s longitudinal position with
sub-meter accuracy and independently of GPS. Use of the
UKF was shown to reduce the computational effort of the
PF by over 99%. The UKF was initialized using a variance
estimate from a PF algorithm. The switchover from the PF
to the UKF algorithm was found to be unsuccessful when
using a chi-squared test. However, a modification to the chi-
squared test was developed and shown to be effective. The
UKF was shown to lose the correct estimate when the vehicle
departs the roadway even temporarily, but by monitoring the
innovation error of the UKF, it was shown that the PF could
be re-initialized and could re-capture the correct position
estimate in circumstances where the UKF fails.
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